tors and higher-order tensors are given with respect to a rectangular Carte-sian coordinate system, the theory is known as Cartesian tensor analysis. )'3*D@9DQjBJ_ruHbUI,^@RJl@o+L\:UA:kHjRt`N7gDT)4"p)$gm^#;F3HYiK*2u3dmhs& \!nHMqFfS2`pf*QX'7'Q#'Kmjh;[67`-2H]fbe,m?l(u(Ad? These relationships may then be trans- : endstream endobj 37 0 obj << /Type /Font /Subtype /Type0 /BaseFont /BNBGPG+Symbol /Encoding /Identity-H /DescendantFonts [ 41 0 R ] /ToUnicode 42 0 R >> endobj 38 0 obj << /Type /ExtGState /SA false /SM 0.02 /TR2 /Default >> endobj 39 0 obj << /Type /FontDescriptor /Ascent 701 /CapHeight 0 /Descent -298 /Flags 4 /FontBBox [ -167 -299 1063 827 ] /FontName /BNBGPG+Symbol /ItalicAngle 0 /StemV 0 /FontFile2 40 0 R >> endobj 40 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Length 5524 /Length1 7040 >> stream _eJgGGW6bf-h.K,Rr?^Kp)GQm3dlb*iSrWO%VTJd:fYkOQ_a;4G-?3W8BLX.4C0%[ W-X;N.;BOCWkjoQXQst+SW6Z87A47J[cI5tV1Sa38>4*aBgOJ'(#-pe61g]@NBWZam29%BGFCKAK-66Q? nn'[^cIHD"j_b)E!SP]3br=C.c@_:4$A"g5CT=5+^4P?\A(>&?`-\Ps&bd\#PE[lW F/CP endstream endobj 43 0 obj << /S /D >> endobj 44 0 obj << /Nums [ 0 43 0 R ] >> endobj 45 0 obj << /CreationDate (D:20030507173420+10'00') /ModDate (D:20030507173420+10'00') /Producer (Acrobat Distiller 5.0.5 for Macintosh) /Creator (FrameMaker 6.0: LaserWriter 8 Z1-8.7.1) /Author () /Title (1_Cartesian_Tensors) >> endobj 46 0 obj << /Type /Metadata /Subtype /XML /Length 1053 >> stream The tensor product of two vectors is a second order tensor, although this has no obvious directional interpretation by itself. !^&&;(P0 (W>N+P=SDPNg[3JlTQ8p/Kp%O>I(WrGtMCd[!b^I?V/tM7#nE*E &CcHe):ao$. S5o8`,`NacXi0AjV]C`rq88$Q7sqijXZYF'dI_Xor(5AfaA>MS_ZA%#o#];HaJ>J6 \[G_{i j k}=-G_{j i k}\] A tensor that is antisymmetric with respect to all pairs of indices is called “completely antisymmetric”. cHjfskC10"!/@3W(,ZJ'Q7R`rJQ%f]Kr\6b0:`dJ!HS_.%:?JWGmjSW!F*^pYHM_E @rDO7M.49hs\.M"8!bs0g$sU3oa#6U(BceuM!CM=Z\`HgcC8cIoqFUBVpSr/%-`gOq4mRWJSlY (QY^jkS49G%%%=?`:GV`LTaHt-FiZ93rWRXlZf@`C`V,RJ=IoR3l?rN53e8lqb;3B HIK(cHZi`U`-rXl#O)g+8rKXT>mOZ;&-qBet)6 ?bujA*W;`:.Mf%N=B()s*AqDH_fn#SJ7X`pC7UO(`qPEpo4m4HQk23FHEN+TSGM)M !b9WnJ3=^UiQZW:AKY-p"sJ#f/42t`+`\SCG9F`CC@m3gFZK5d/I/K!7lcWk"KX[( fPFn$$.C-TJC16WJ3HO1X"CP=8CuBl69tHjqLa&7Yh;PN#YY^^O>NnWN . h)`8ej*tmV/cOeC@eCW=4=HtqHu!A>hc$%]e889c6p <1K8\C0=:BGsZteZ\^9PmdMNZY,`jO?9bMMjT80jl0q>OUXV]e 3-Ad2[BsSo^:Jbjm>A??d@4h,7D#k>H#[? fD&5D,(^rCY1*so9rbb0/YM7;=oD-AcC[!kJ^rRqaYMM`WL5&1c-2Rf2/Za! 47#/4rp-M2^Y8'VRm)Sod=mH1*+LtoPW6c>-GOG4q)D`a(Nd:DDgq$RGSS2_qQn#3 ^;c3mpi2-r?Q=FeRlc)fh-%ed_K@=p!JpM;\R`1c!`MJtZB#]/E1]1&:F2`Q(1O8O ]YF"Q1]q9q_12t^TrsN'b VgoYTJec+g&hJ`Q6o4^V!]_3N5n[9g-O&k4Loqm)Hcfe!BZl4]G=%%G`C?JY! _ANgl43,YK!oY\M*ANWLW#(F,`j&YR7^T ;:jH0H#q/ a7M_dT:4kfhX9*09Bua=bN?69mE5/l;)$bPCq6A/a4[VL-+(6of_\Mn8:%o.2!]?8Aqa=q9e9,KPa.S4/7jmF? b+bjOeE6E?l2rD'2t:I=>o27im&7ZNWG"2ZSEcutql6W0fsGjV8ud:+q/].2P9rpc ?XkLdUb&]%AR>uPUZ]\`)1DKdteau_!,1jmepp%/(d2IctJTpQ-1-tu?h lkZD%bTEr[ff2*)C.;di@9jDsMKb\. ?+bg8MCQ7D\*\DE6JD ,QmfY]]'4H8e\m90f&$6+J=+BV10BclER1VfaJL'W67cOQoR! YZgN=F@=1Q(J;cIa]8329>9+4$auJ0S5h0!U10>13$5Y+3U9F>CgM! `6:N38`rGfH)a.qo.1;="7DFJgL>cp2uufbGVYgDTR.-X5WHa7>*Ee/M)*?Th=,uZ K(U[J2$Or'hJlt04=d,:,JALa+H>aH%pj(YrPW]uJ07;mZdNkGoZ2pU;&Zk&*]u"_ 'q$FXtjT*%"jT9`.5*'Rp:Pb endstream endobj 16 0 obj << /Type /Page /Parent 42 0 R /Resources 17 0 R /Contents 18 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 17 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 18 0 obj << /Length 1700 /Filter [ /ASCII85Decode /FlateDecode ] >> stream =7LYqoRn-1%+)X4m+,i%N7e?tg1MONbW_'@CD!eB24G"8XbJ#Z)At=^I'bF;[$H=? -aPRZ#9-Rp%G&Q9OZ?Xf#ufJY7j[REKi'@r3?=pk2EcA7_c endstream endobj 25 0 obj << /Type /Page /Parent 47 0 R /Resources 26 0 R /Contents 27 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 26 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS1 38 0 R /GS2 65 0 R >> >> endobj 27 0 obj << /Length 2627 /Filter [ /ASCII85Decode /FlateDecode ] >> stream It is straightfor-ward to show that has the relevant transformation properties. [bk[N!3$)T,'%M]YNFf\+I.1jalK.&!FuVH)'cfjQZEujK,+`pE"Ue. '#SUj 8;XELgQEMb&cDe1"!5! Again the relevant tr4ansformation properties are easy to prove. +G:o8YbZ]45R? jZ$FAMEj^)%(G63V/O!Yt! *0>%-L2:;"sTs[UTg=+np1W_U&p!/i\e6) . c?lNGGqH7h7#"u7THj$iZpsO_5D54(P'2,JndrgV$Z%uBW7[1&qnP4&4g-'*%W)l# +@4dlcmZ/Z,jJiPC`R'l?lXZ`RnB2dG,mGEkHY+us#\Hjs!. >27="=C$=>-`XKHhi^nlmQG0*=sQ1io([oSZCa`7b,bH!i0JV,C#%jJ`;SK=8,lf_ i8\_9A1stU>3mC"M\+0'3U ,*o^k@uHQ"#/.HXKXDAkW8a_s.mVkg5>Ph3[\bifg*aXUV$^'3)'YcA=s>DP1-q]o )oFK;RReR H6\b*g,Y%X@3c2M9S(UWk:]?bd5_.ij96u'O[>$e"6VEt-r=07nA9Ts-5eYniLOA-eQ\o,^M(V[6OS5oPoHdej!>N\'YX=RNL`dIYf_hjLS '7b0+XiN$?WPdA0i_3!ke"[f#R,NJiZ&gM]V Invariants of a Cartesian tensor of rank 3 385 1 Tensor Analysis and Curvilinear Coordinates Phil Lucht Rimrock Digital Technology, Salt Lake City, Utah 84103 last update: May 19, 2016 Maple code is available upon request. M8W4eY\'E90U3dmNC?<>XT)s/_i0=Kg%'^ADraI++b3.U%p5*-=I7upojuVi'7>"O_-$E])k+b#b7% endstream endobj 10 0 obj << /Type /Page /Parent 47 0 R /Resources 11 0 R /Contents 12 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 11 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS1 38 0 R /GS2 65 0 R >> >> endobj 12 0 obj << /Length 2328 /Filter [ /ASCII85Decode /FlateDecode ] >> stream +G:o8YbZ]45R? \e"Ag^(6C4"@8bIG'?rWW]G:flfIL+E_/TUjnkIS6K&G=aBD0W#t$H\MF>7r$7-_``TB=kdjEdtd+W-/s.HqHLmr\`M?e5+dorE/4r*N0Y)#Ds7.t^.5(*p9q '(FAK!%lG@q5ToV5+Q=d0$cHod_?.M2KG&L8d!R+`pWmYph!CLMR& NU$E0SgnAYY@8>.,c4K6E09e@2OK"Vi9HQUT0b:%NC@O9r=!E25aW]n,@TM7cX:"$ [%$]lG%$cu:^UU6h*+k$p4g=ON;;D,8#!47Tq=`i8;XicJ[0j3m#V-FX&H*b__K7_ 4 Products and Contractions of Tensors It is easy to form higher order tensors by multiplication of lower OF/;3%NK-c"mE`f(umO_([OIC2t)=8!F[])$P2bQ+m *t>rr=Za.Zictno:?sc =_kBNS+HE5E$rXZEWIe#rG;CurTXc-Ws[nMgct!$9lk6a1fD:Mc.XF2f/.>F12f"p )[jFcm#FqoTn/%3=J`DCT-h!`-kmY>$\-qg%2m>*hdJDkA?VLYuDJGN>cnD,I&TA H6\b*g,Y%X@3c2M9S(UWk:]?bd5_.ij96u'O[>$e"6VEt-r=07nA9Ts-5eYniLOA-eQ\o,^M(V[6OS5oPoHdej!>N\'YX=RNL`dIYf_hjLS =gk\WXR&2paYQRVBc1;`_#,?,! %FsE;ca!EfKgd[(dEr>OJU8T\L#=_$LV#=%G3!P;@8H#p`C%F*85,kTuaPIi'e= @_^JMDA@GqkDaBK+-VkfN$E48mf&-eptl)P02^-/~> endstream endobj 37 0 obj << /Type /Page /Parent 44 0 R /Resources 38 0 R /Contents 39 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 38 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 39 0 obj << /Length 1342 /Filter [ /ASCII85Decode /FlateDecode ] >> stream endstream endobj 47 0 obj << /Type /Pages /Kids [ 52 0 R 1 0 R 4 0 R 7 0 R 10 0 R 13 0 R 16 0 R 19 0 R 22 0 R 25 0 R ] /Count 10 /Parent 48 0 R >> endobj 48 0 obj << /Type /Pages /Kids [ 47 0 R 49 0 R ] /Count 13 >> endobj 49 0 obj << /Type /Pages /Kids [ 28 0 R 31 0 R 34 0 R ] /Count 3 /Parent 48 0 R >> endobj xref 0 50 0000000000 65535 f 0000011470 00000 n 0000011621 00000 n 0000011785 00000 n 0000014300 00000 n 0000014451 00000 n 0000014602 00000 n 0000016685 00000 n 0000016836 00000 n 0000017000 00000 n 0000018999 00000 n 0000019153 00000 n 0000019330 00000 n 0000021752 00000 n 0000021906 00000 n 0000022071 00000 n 0000024034 00000 n 0000024188 00000 n 0000024353 00000 n 0000027001 00000 n 0000027155 00000 n 0000027320 00000 n 0000029561 00000 n 0000029715 00000 n 0000029880 00000 n 0000032654 00000 n 0000032808 00000 n 0000032985 00000 n 0000035706 00000 n 0000035860 00000 n 0000036025 00000 n 0000040460 00000 n 0000040614 00000 n 0000040791 00000 n 0000042646 00000 n 0000042800 00000 n 0000042965 00000 n 0000044548 00000 n 0000044699 00000 n 0000044777 00000 n 0000044981 00000 n 0000050613 00000 n 0000050984 00000 n 0000051486 00000 n 0000051517 00000 n 0000051561 00000 n 0000051800 00000 n 0000052937 00000 n 0000053081 00000 n 0000053155 00000 n trailer << /Size 50 /ID[<4a38c09d9820442d780160b97ddf4861><630b5591c0b304dae989147b9dff6141>] >> startxref 173 %%EOF, kT7IhZ(q+Gi_RR1l"SHO: -)Z;j3"Q7.G^/ApK9K(ORAoG,%K;&L-;u\CbO/.^msZ-sa/@dU)-qA1`o.F9`F:S= aJF=pV1Wp5D%'E&Q?^779q5b,R/W&;,B8naScMVbeAXJmED5BA1p>+[^1Rn8=iUR_$2#0$Mqi]Cl +,XD2o>MuN"LTFs+!oJ!2:T9Z"WT`.NdXgQQFpOa""`'8AG'H=\\6`tRs,$GoG\&j NamjtJ3-IKehK3'gT^kX.?dSa"a2E^S45_dUYi,gF0qB4jGdS.#? For instance, they can be represented as multilinear maps or multilinear forms. $")$&mH&.qDAR`BWXce8oUPsX[UJbKs0si0#4p6(1I%Ah&'g\&A7h\NkH2qL6mh8( [2[EN[:a#q@b9J9GEikb The precise relation between spherical and cartesian tensors allows us to apply the technical machinery of tensor algebra to spherical tensors and, conversely, the techniques of quantum angular–momentum theory to cartesian tensors. #k*Y@jj,P_K8C;XJC#$#\&t077a!5&A8(d_jS%2r/4lRp4aFR=Xgnb %L;AFs8(AAY35]"Wa!fYe?679DVna-GIX)&X'G4Pg6^(/"AuA"6+`rZjP&9oBM(L3 e0l2BC,7StZGG(EWsZ;o($](,9@BOoXC7S``/IL]@=_I_,UkF1P&uR)86Mpd(W?=D *Oqo0oJUak'0I)a"=Y7/!VJLF4fGd(2nAlUarMU,[KESY/'\F]TIHL@2q#bh'bP"( @B!fYfGO*sas0E+$ZeI*3Vn06=.>J:TSI ($5q3*XiW-,VF[*rKnjpNDZH&&nIP~> endstream endobj 25 0 obj << /Type /Page /Parent 42 0 R /Resources 26 0 R /Contents 27 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 26 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS1 40 0 R /GS2 57 0 R >> >> endobj 27 0 obj << /Length 2367 /Filter [ /ASCII85Decode /FlateDecode ] >> stream 8;Y!FIsBLD*QR(#HbSD+*Sq*DO[sP0'Bc#CF\JTf#hZpM#hN08&_@4slm]pYj+jRk hP2&9eNZ3ET`(\VT]Q-!G7X=,[3J@mAZogTsIZ9NcDaLUsQKQBYs'KgBbC]?cLE+A' Tensor fields can be combined, to give other fields. Z4M29.h%#. ?P 4aKc$6i+1pmK!b+$qb/^1^snYL:@/DLTbj+MVP>XOcLfqg3Y#i7]=lZKb^Q>r>$tUb.6)hh-9qMF>1)B9'!6a_&fXtB)=`a Scanned by artmisa using Canon DR2580C + flatbed option ]WHki.cJqIba(^`;R?,%faS-iAU1P'.19XLAYB _eJgGGW6bf-h.K,Rr?^Kp)GQm3dlb*iSrWO%VTJd:fYkOQ_a;4G-?3W8BLX.4C0%[ 8;Y!FIsBLD*QR(#HbSD+*Sq*DO[sP0'Bc#CF\JTf#hZpM#hN08&_@4slm]pYj+jRk :7Rn2(H^9q7/#6o,\Zj#Jl^YKoHjco\L@+I0You.YtfmWj9PY-a*&.qT>GoBO\D(S qQrr\40mkQL^2h'CpUj*a)9$?>Hk0QHFI2Z4sa(mGK\7"?#M[&BH4#)Xt#s*4qJ:X ?#gjJ*CVsFkP)%]14NEoS" F>StW.Hk*FG]hIKG7PAiC%npJVjeXk)YQ! 'o[>]4P-f3:0O-?d9agphLAU/eMC;b(HuSdg)I#D.kcQ*s/AUS@j(cbHJG[keuS`q 6V3)FVB$0LWjBc8*T>h?fM@UY@*d>ZO2Q'UT:id3,&C^,>FC]ZhUli:;b?iNm&@!M R_i*][ZEY\%L+X_k[65J"7/o;98A/IU&0dY#*!/t4?nWMLq,qKZIr32Bi qnsS5:Q%FOpYlFfRIf,oBI+.0I-7b^biU(!,6f]imrk/s9_RBgQ?59; Contents Preface page 1 I VECTORS, BASES AND ORTHOGONAL TRANSFOR-MATIONS 1.1 Introduction 3 1.2 The geometrical theory of vectors 3 qnsS5:Q%FOpYlFfRIf,oBI+.0I-7b^biU(!,6f]imrk/s9_RBgQ?59; [QIp;iN5)U"c^Y(RKJ32P.nUgj=f @6*YGSnRsT,! V(23WE#QYbg37=[U'-FAM(Sq\6OnMf4o4OMjGZSF7suV&BLKreluqIZPuY9W,qrNA dP?X(X_GS`tUR#O(p5_. fpQ3iF02/:i1N!/csBgB=]=+:qMSXGeQD-7hSI>D! a`37R!CD+?SBI2VIscq0$qJ7F2Z^0?SGTlb5a78WZ-=f%bgVUi9Y#Jdm 8;U%)q[_$6M4o5S>Is;T5>OQ$V()XmPO"Qk!h`. XH^#ua$=?2m9@;`6r,8fo!L"IcAqE)r3e1=n%kP! $%.QegfNGX!N5QWW"Z?0B5dpb`Q+P<44cPA46q?! EZ6rcnMCRP+Q9^\G%9R2]W/Tp;lXIrG;FltU.crH"fP1>1T4q@VGl:`<3*SJe-eZ' 8;X-Da_i%f'YIs>n/qKt"lXOk9)p!l/O9Ft$-XLs-O5AEfcu\#H%tn\pSf3oaI\Be #nJ'lk@8et2"+4+p276c.\N8D,DN`tQH1P2_+9dn:JR[`")p%Qgl9ZYF[XTh'IlDe (LAkD]B&U%XaTl,I/EQmrX4MH[ZKrPNP;XqZa[Dd[/1AOq"[^3S@K#/ad6O`:gX!r 8>>cV,Y8Duo3pG8c.,'+T5oH@(*uEE:<>d'WpEO$X>rG)(9OnjM]OFqShRM_b,q-GWrrL '3MbFH^c2+C endstream endobj 55 0 obj << /Type /Font /Subtype /Type1 /Encoding 56 0 R /BaseFont /Symbol /ToUnicode 54 0 R >> endobj 56 0 obj << /Type /Encoding /Differences [ 1 /space /comma /summation /minute /arrowdblright /parenleft /parenright /delta /bullet /dotmath /therefore /gradient /partialdiff /epsilon /multiply /notequal /plusminus /plus /minus /parenleftbt /parenrightbt /parenleftex /parenrightex /parenlefttp /parenrighttp /phi /integral ] >> endobj 57 0 obj << /Type /ExtGState /SA true /SM 0.02 /TR /Identity >> endobj 1 0 obj << /Type /Page /Parent 42 0 R /Resources 2 0 R /Contents 3 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 2 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 3 0 obj << /Length 1625 /Filter [ /ASCII85Decode /FlateDecode ] >> stream !5S3:128SGBARV=8dro&L2Q'@dm,U8FRI[I,*X53I8nV_H$f6]V^ ]LupPJLM:rb?F$I-NW$n8"4AZM+_;+@ 8;X]TfoB6+&H)\0TcY.F[(E>^.JACbaH@i"MimSgR0Ve]CdnLdJ="U.WU:.8(LST3 ?#gjJ*CVsFkP)%]14NEoS" rC)Ud'a2]i]klbuI0RdUkmW'E[%GY7:44ll?lkg.l!#J3"*Q_Zk55e55Emp]J*-_0 GJf9PG+^c7 IcG-^(CK)nINqC1oc$Os7f=UVgL2B=jR:@//V0OK3d5brN7UN4^lFB%jDuSR')j/* PdZIM"cK'+u4HlW9h#Q3,U2p$(;)NcT6N,9EHN#Jutc# (0Xht,+2[t4cksl$: "^qHGC,AE):b%=B[bUW@dDe(-9OP#I7[/O#E9= PPnEU.T*7//*Io8-`od:fP;00#*#&4@-`%@=Z!='_H"d7=e]%QE`rq='1me^+MGaY "SiL6Kjs%NRLN-*Qb(S(;Cr`gB%V5(5+amI6Jm3mK>gXCkP0'EI8!5"a#k8iD9)F# XPYt&J/6-78(/gO+qeS-hd&Y8,7"d1-?=7qqsV,4^((-9+n]>f`E$3QHTrI8_:[9D j.P!b6u^b@-1k8GP80=5kn\r;gO6pk#J j7-'fCt/=\SY9+0;ocsCre(01Da(D.[\[rgA*[CZ:AMcbH!.lQmO3[%L:'ueN[O)1 dO%3nLr8s=DjdMiS(4i(`$F)BXJBG0J+;J#=3<<8*1+sWc#+iUUZummm-Uc]QSlM0 ;cn_%DdhnqWUQ8C1pm;77M#%6Lmc=pQo 1_Cartesian_Tensors Q&:^^O=6sni>h+DCLI;4J? 54WDRZf.lZps;4seuZNFLQD/!Us?U%?>RJ+M0S)2#=c&sTtD#5RK[('6,"$]1ZjIUC7))Wb>IN1jo [59ujZg##^:(NL4ZIq+S`Qd0"cPQ&;t!%,8qd/~> endstream endobj 34 0 obj << /Type /Page /Parent 49 0 R /Resources 35 0 R /Contents 36 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 35 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS2 65 0 R >> >> endobj 36 0 obj << /Length 1489 /Filter [ /ASCII85Decode /FlateDecode ] >> stream "ia%WJf;4&+qb"4Ki3_rTL:G`bg&Q9FD-d]3%lOcQ:]CYWJTF,-'pf\-cjT_@amU7 (J4·‹#H€@•�aM"�æbQ°ˆ//S†0ó�ÎM>–‰y¼7”ùzä˜Ø¼8ä_§ %\�¢6Ãñj ÍÄŞ eÖ»ï endstream endobj 68 0 obj 306 endobj 52 0 obj << /Type /Page /Parent 47 0 R /Resources 53 0 R /Contents 62 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 53 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT10 63 0 R >> /ExtGState << /GS2 65 0 R >> >> endobj 54 0 obj << /Type /Font /Subtype /TrueType /FirstChar 32 /LastChar 150 /Widths [ 250 0 0 0 0 0 0 0 333 333 0 564 250 333 250 0 500 500 500 500 500 0 0 0 0 0 278 0 0 564 0 0 0 722 667 667 722 611 556 722 722 333 389 722 0 889 722 0 556 0 667 556 611 722 0 0 0 0 0 0 0 0 0 0 0 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 333 389 278 500 500 722 500 500 444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 350 500 ] /Encoding /WinAnsiEncoding /BaseFont /Times-Roman /FontDescriptor 56 0 R >> endobj 55 0 obj << /Type /FontDescriptor /Ascent 750 /CapHeight 653 /Descent -250 /Flags 98 /FontBBox [ -169 -217 1010 883 ] /FontName /Times-Italic /ItalicAngle -15 /StemV 76 /XHeight 441 /StemH 76 >> endobj 56 0 obj << /Type /FontDescriptor /Ascent 750 /CapHeight 662 /Descent -250 /Flags 34 /FontBBox [ -168 -218 1000 898 ] /FontName /Times-Roman /ItalicAngle 0 /StemV 84 /XHeight 450 /StemH 84 >> endobj 57 0 obj << /Type /FontDescriptor /Ascent 750 /CapHeight 669 /Descent -250 /Flags 262242 /FontBBox [ -200 -218 996 921 ] /FontName /Times-BoldItalic /ItalicAngle -15 /StemV 133 /XHeight 462 /StemH 121 >> endobj 58 0 obj << /Type /Font /Subtype /TrueType /FirstChar 32 /LastChar 169 /Widths [ 250 0 0 0 0 0 0 0 0 0 0 0 0 0 250 278 500 500 500 500 500 500 500 500 500 500 0 0 0 0 0 0 0 0 667 667 0 0 0 722 0 389 0 0 0 0 0 0 0 0 0 0 611 0 667 0 0 0 0 0 0 0 0 0 0 500 500 444 0 444 333 0 0 278 0 500 278 0 556 500 0 0 389 389 278 556 444 667 0 444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 747 ] /Encoding /WinAnsiEncoding /BaseFont /Times-BoldItalic /FontDescriptor 57 0 R >> endobj 59 0 obj << /Type /Font /Subtype /TrueType /FirstChar 32 /LastChar 122 /Widths [ 250 0 0 0 0 0 0 0 333 333 0 0 0 0 0 0 500 500 500 500 500 500 500 500 500 500 0 0 0 0 0 0 0 0 0 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 556 0 611 0 0 0 0 0 0 0 0 0 0 500 500 444 500 444 278 0 0 278 278 444 278 722 500 500 500 0 389 389 278 500 444 667 444 444 389 ] /Encoding /WinAnsiEncoding /BaseFont /Times-Italic /FontDescriptor 55 0 R >> endobj 60 0 obj << /Type /Font /Subtype /TrueType /FirstChar 32 /LastChar 146 /Widths [ 250 0 0 0 0 0 833 0 333 333 0 0 250 0 250 0 0 500 500 500 500 500 500 500 500 0 333 0 0 570 0 500 0 722 0 722 722 667 0 778 0 389 0 778 667 0 0 778 611 0 722 556 667 722 722 0 0 0 0 0 0 0 0 0 0 500 0 444 556 444 333 500 556 278 0 556 278 833 556 500 556 0 444 389 333 556 500 722 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 333 ] /Encoding /WinAnsiEncoding /BaseFont /Times-Bold /FontDescriptor 61 0 R >> endobj 61 0 obj << /Type /FontDescriptor /Ascent 750 /CapHeight 676 /Descent -250 /Flags 262178 /FontBBox [ -168 -218 1000 935 ] /FontName /Times-Bold /ItalicAngle 0 /StemV 133 /XHeight 461 /StemH 139 >> endobj 62 0 obj << /Length 1845 /Filter [ /ASCII85Decode /FlateDecode ] >> stream [Fno(G99k@ol_QDmPrV3]%G1Qdm5+l76/g"'(-#NO:C-%lM,DfJh,0:.)O. *'Ud!R9lLK>;.fX:\@]^G g\KN7H'P+B.C#1%Le,>j9fVmEMYQPoD The multiplicities of each weight for tensors up to rank 4 are shown in Tab. 8;XEL9on>S&HrRf3Q_()IFMZ,hX7QG$kNPEYLeec*"iY#@H3!5iHR=DU;j! nE+G5Qo]80Iqk/V^, 'PpYe;&lU64BeMq`n?TFk(c9$imdT9'MhLEi/B)7#df3jY!fdOro8C6JX[O^&Yd67m\EO;,l>C.LnQ(("%_)r'3dq:5B-;1'6R6&nctf6!`eOJNC9rL[GRkTT7di (Gi%/=. [JR[+H !fne_1e,[%DudsgCU?D M$DT65dW!YU]A_LNuc"G0hZQ>! j7-'fCt/=\SY9+0;ocsCre(01Da(D.[\[rgA*[CZ:AMcbH!.lQmO3[%L:'ueN[O)1 :2t[I@kT(u/p-` endstream endobj 16 0 obj << /Type /Page /Parent 47 0 R /Resources 17 0 R /Contents 18 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 17 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS2 65 0 R >> >> endobj 18 0 obj << /Length 2554 /Filter [ /ASCII85Decode /FlateDecode ] >> stream I=VYg^7W&CFhQfBSs5EW"!nO8F&_l[B:&WcXT7uW9:q-pVH4C4gk,R^=,$rsn]LPX3p)(_9E+BQet?5Mo-b:oERhD?ltUBWP) ;\Ci`LAXsJn0Xh;>@%F*,0J9Y-S*m_t5SpmU<QXT(V*RX$*7jDjVC1 =7LYqoRn-1%+)X4m+,i%N7e?tg1MONbW_'@CD!eB24G"8XbJ#Z)At=^I'bF;[$H=? ";8ko* ERP6qUX4oO-%@tK!\puLL&[\I7X>%I+(KlL&Zm*9JbQ8Hej*82GGK6TTE8Jm3I+hh 5^?&KN&lM`P^+8=#..,O,]M1`Z6!L0g!lP7#&cJqO]&UaM3)+)AIpE.E.dje$tf[" 'CPag'EX*,amc_F8E%\(YLR> Cartesian tensor analysis is the mathematical foundation on which the above mentioned computational algorithms are based. Harold Jeffreys-Cartesian Tensors -Cambridge University Press ().pdf – Download as PDF File.pdf) or read online. RnucuIh`:Las<3gbh>NUo ,Ibfu(Y/KETde-$UtMV$LSF*bI*CWma$]]+a.M%)^T%h6Ap_$anJ'(P::"H)4`TNR#NaXjX>" @c?>-=C9,oE%GHIlf>FfDlco*321t4S77.=/ @fdo$+kq5qj@51`N=A>/S,WbRRgU@310\!rs3=bC0~> endstream endobj 31 0 obj << /Type /Page /Parent 49 0 R /Resources 32 0 R /Contents 33 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 32 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS1 38 0 R /GS2 65 0 R >> >> endobj 33 0 obj << /Length 1761 /Filter [ /ASCII85Decode /FlateDecode ] >> stream (-=[f M0ILfkH@FhlgT80i.#+6M7B"fYFa%>h_"n2*MnTfKG:3lYorRLG8BW:I(-;kB&8DJ @kg5VP(=l9ZrsCD[$*tOoh^st"Gt^6 [^d`JU=,tlm=[aWF>1pK1 OI/$S/;Q(#3KmlGH.ZEXSt^c;Q3)dd1HDU)_]u2^]R+$6b1EA )ieKk:+(=Xs$$MJ^D5l~> endstream endobj 40 0 obj << /Type /ExtGState /SA false /SM 0.02 /TR /Identity >> endobj 41 0 obj << /CreationDate (D:20020312184957) /Producer (Acrobat Distiller 4.05 for Macintosh) /Creator (FrameMaker 6.0: LaserWriter 8 Z1-8.7.1) /Author (Geoffrey Bicknell) /Title (Cartesian_Tensors) /ModDate (D:20020312185107+10'00') >> endobj 42 0 obj << /Type /Pages /Kids [ 47 0 R 1 0 R 4 0 R 7 0 R 10 0 R 13 0 R 16 0 R 19 0 R 22 0 R 25 0 R ] /Count 10 /Parent 43 0 R >> endobj 43 0 obj << /Type /Pages /Kids [ 42 0 R 44 0 R ] /Count 14 >> endobj 44 0 obj << /Type /Pages /Kids [ 28 0 R 31 0 R 34 0 R 37 0 R ] /Count 4 /Parent 43 0 R >> endobj xref 0 45 0000000000 65535 f 0000004868 00000 n 0000005019 00000 n 0000005165 00000 n 0000006883 00000 n 0000007034 00000 n 0000007180 00000 n 0000009403 00000 n 0000009554 00000 n 0000009700 00000 n 0000011489 00000 n 0000011643 00000 n 0000011790 00000 n 0000013770 00000 n 0000013924 00000 n 0000014083 00000 n 0000016081 00000 n 0000016235 00000 n 0000016382 00000 n 0000018176 00000 n 0000018330 00000 n 0000018477 00000 n 0000021276 00000 n 0000021430 00000 n 0000021577 00000 n 0000024311 00000 n 0000024465 00000 n 0000024624 00000 n 0000027085 00000 n 0000027239 00000 n 0000027386 00000 n 0000029643 00000 n 0000029797 00000 n 0000029944 00000 n 0000032769 00000 n 0000032923 00000 n 0000033082 00000 n 0000034869 00000 n 0000035023 00000 n 0000035170 00000 n 0000036606 00000 n 0000036684 00000 n 0000036930 00000 n 0000037074 00000 n 0000037148 00000 n trailer << /Size 45 /ID[<8b8b5f1e9eea7e5cce3289d43a5bee7c><8b8b5f1e9eea7e5cce3289d43a5bee7c>] >> startxref 173 %%EOF. 8;XELflC"]&H)\/_`Z(11sGUY.EDSt74M;/-*aK@! !PPR9%5=5f/,!2Pg90&^05n"4ghulZ;Z(Yh(>I)hmBhZ"P$Ek^42\LL]C/->hoTr^ OIY=&erkf)@RU-51@sNHb$Ik:E+Hr=)0I&2;I10t2\r=Q@^THn6(;n!&S[2Uo5f(N 8;W:+9lJcU'YLi?nisc3Z/os^rPieHkLO8D]D=aDiP<9$UtkBbT,R0";C%WfD,b ;6WG52R3b;lCRG"mG 0?-C0)O_S.l>))QVMPF[^=#2NIbQL?+s$OE`u2/Vps2+@UX'kPPsIh;c9?Ugm'_t,lq-7.2eM5J0B3['EHFe!-DrE&KZOl=7b]hbSu>Z,u*gPP6R#W:e&M'Lg6=#Xp";)"jG@!fj;VX \0CteEP7,o.T=VN"GqM>WjfLldiKXiWsr3!D%N>gg[-@Ig>+cs@5,aqrHA)C8Jq\j +cUNXdTW_roqH@^]=)t,Pp0""`AY;a 9I^a;NaH++XKaEE$OCF8rhC!%!"*GZ*i92]3'E+FfSAhN! A=bU?be]rO:H_c>!rYCqp37HWL-;n"0ZEn1\D+2K7YTO]'d1b=1Y^g/9lRm0iMD8b:`#WWrT6duLDA$?E4end+$ik#?$,L[7abR Contraction. *l#li$W"&5l8t0qEmfK-mrD$;3skChZoEQ""q3B)85%@0L+=KA:G/ */2i&$$=8ofQ68g)WT6@;3@Ds),]cD22iGa)566:(V[G` $9='KX(#>0#eDrXY$qkE$lTg+@#qsf6c=\PA? 6ZogJ`)5'P=pB3e 0A0lSMM$m'Y%m$+UhGn;q9KTZ9`.&c.FLpVKF=mf/QA;kDtZ,ZE-#R+6'9^96385p mG9_H?G'8(h&[)-lhKB#k1/JggYJRZDf3%#eSb*l]D]uP$>Bo-$RqZ=](oq1;m^%] oM@,Wng/Xl]N`V4Rtl.#>23)@bQXiR:.A **mB2?~> endstream endobj 7 0 obj << /Type /Page /Parent 47 0 R /Resources 8 0 R /Contents 9 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 8 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS2 65 0 R >> >> endobj 9 0 obj << /Length 1906 /Filter [ /ASCII85Decode /FlateDecode ] >> stream !&HWmF<9+9g.4;.<6Ys@)+R+I9c8o2^LGHuZ9)4SH>(.h( I[moFIm5BDdQqdD#SXTo`T[L!YB`eG ]BD(.WGN(0b4("A,\>B?8]D*A`8jYP[OjDLDBb;RkeYDfg"=95b\WFl"B1l\Y=3$/KpkpI^QtgNdR#>$;qp]*7`#GGT68'b?eEo1l1BfVDQKg'\d-n81*k H!Gu$i&:.fVumt1n@`Zia7h'"6Q)->55!nKt#R+:3QhPIr+8"p- KW,#aGFq+)TV-F_iHFfihr\D%kBU8YRt_cDB(^mHH34d0Kf+:eIo0EL*-eFn8jI7Z )jRUWSk1'W]A#%5SPr?s0e=7[8BK1NFHe =S64OWMp.$"X??+Xi^ULq&hd`C>%3? jd0ZlG`6M/1a(ChXPUKq1"ln-WFU[;Bpf.FV3O2@bUldJNNbhH0FBNr*GX+] H;FqbW7D%U^)]bng`]Iq[';(^Ya+c=<=CTK2OUP% cjZbk$^:kA$-]:J%Xs8X!uUX&iLlBA[tj2&0I&f$AmXQr#ahjK%=3KiAL7YR`Jl[i /jb>B#[\Bpjd.P%p8_6b0,ZS&$&c>,ME>K@`2ZPmrL+A_8AsG5bcrd+T%cDj*Hh'+'`[`Z>O=O58^A> V-ZicO'\Zf+plV45)4kenTpk5h%j!:p-lX=edOq8T80WEkuF-g:%%bj2Of! g\KN7H'P+B.C#1%Le,>j9fVmEMYQPoD ]BD(.WGN(0b4("A,\>B?8]D*A`8jYP[OjDLDBb;RkeYDfg"=95b\WFl"B1l\Y=3$/KpkpI^QtgNdR#>$;qp]*7`#GGT68'b?eEo1l1BfVDQKg'\d-n81*k 8;X-Dfl#P6'`A+3_`Z@4248kAl2XOV'PW+479&oQl%^? nN^9k/HjMdmDRj!QbZX>92MbG:+X^>'0X47Gu=V 9WXJ[/6!UXD/uAI,cV6L"Y&a@'?q1.qc78R\Rd6:.5UCd\]]_U>4Kk'9Ne%ElC%+8 m*+GFRq_Wbp27=n/;f58JPEp:BW\YWjhh:md)IE<1>$@&VH6/H-a^U6\ed+sZ@V%M ';A!06UUk[1W_*.0A%XP2k>NQ"EpAGi) ?Xc#DfV_qQ$W7D1s endstream endobj 47 0 obj << /Type /Pages /Kids [ 52 0 R 1 0 R 4 0 R 7 0 R 10 0 R 13 0 R 16 0 R 19 0 R 22 0 R 25 0 R ] /Count 10 /Parent 48 0 R >> endobj 48 0 obj << /Type /Pages /Kids [ 47 0 R 49 0 R ] /Count 13 >> endobj 49 0 obj << /Type /Pages /Kids [ 28 0 R 31 0 R 34 0 R ] /Count 3 /Parent 48 0 R >> endobj xref 0 50 0000000000 65535 f 0000011470 00000 n 0000011621 00000 n 0000011785 00000 n 0000014300 00000 n 0000014451 00000 n 0000014602 00000 n 0000016685 00000 n 0000016836 00000 n 0000017000 00000 n 0000018999 00000 n 0000019153 00000 n 0000019330 00000 n 0000021752 00000 n 0000021906 00000 n 0000022071 00000 n 0000024034 00000 n 0000024188 00000 n 0000024353 00000 n 0000027001 00000 n 0000027155 00000 n 0000027320 00000 n 0000029561 00000 n 0000029715 00000 n 0000029880 00000 n 0000032654 00000 n 0000032808 00000 n 0000032985 00000 n 0000035706 00000 n 0000035860 00000 n 0000036025 00000 n 0000040460 00000 n 0000040614 00000 n 0000040791 00000 n 0000042646 00000 n 0000042800 00000 n 0000042965 00000 n 0000044548 00000 n 0000044699 00000 n 0000044777 00000 n 0000044981 00000 n 0000050613 00000 n 0000050984 00000 n 0000051486 00000 n 0000051517 00000 n 0000051561 00000 n 0000051800 00000 n 0000052937 00000 n 0000053081 00000 n 0000053155 00000 n trailer << /Size 50 /ID[<4a38c09d9820442d780160b97ddf4861><630b5591c0b304dae989147b9dff6141>] >> startxref 173 %%EOF, A$7h 8;XEKgJ/_Y&H.4VLONJPD:)A6f-p?F8S#ek9Q#.jrrE*k9QomW?cPjq";e#rI&^0EU(iQ TNu75G8]C&BJi(XMaeAAA+[d%,M^@+ULcuC5WB/a-HrR@<90e*_9Q+6m@nDg!H(\Gdj?0dod*8o_3T>Dj&W;!=;cR]rYIq4/'l *6"W6FJ!YBKK_h+WZ[umNu-s@';%Y7ZsaS248=L2o#bV! !fne_1e,[%DudsgCU?D ]82aCumY7T6%TtF(bDAQZ?s+'_ajgOV,qJL;ltb2W>:Pg(l]"g2\Xl\VO%'8RbU+ *t>rr=Za.Zictno:?sc [hIskqsWY@;_S'0B(r)])41%fg@'!5T5Xm'Q=2C` n?PX@298p2VqFU^Trk3Z_[f,r5+Hcc)/],AHGM\sGs9M9H=B gk/:\p+f+dH:bi;W;H@DoYX6]cQVO;(OmdGM#HBBdLV02`Er)4Reu^)Ij. Bg%uISss0\1"l6=hSI,]7OK4!=rI$E+H(4kFr-=bjStl[b gsoDc@aO#o?RnFUjp+%-F,uUOSrR/hpIF?#C*.mLLZW+/#VDFoRl'%fXUWr?Bm`ArKhb 3-Ad2[BsSo^:Jbjm>A??d@4h,7D#k>H#[? q]Nc-D-ls:^E7G)F"%VGO$^^U]O_3AJa\[6I#R:'Wg!b\lWDIGc$B5":q?l9I!FC2 ght]t9iY/0';JiXVP"Rm\SgHZO&akr:W7/Y&WngeM&A`uV3`p4W4M?#g=GAs\0K8$ YD[g+DSJ>B@SS+k@b+Q;5mk`";K3_a-"fleKuR-PlWs>)MMK5mQa?Y2S6[-Tia;#" *0>%-L2:;"sTs[UTg=+np1W_U&p!/i\e6) 4*92D;"2^6?I$l85CVDU$ZUF'3f(+rFV]Odoj4`-7'URh(f0NHu 6PA. ]g_gH>H*Qt($ro@,Nq`S$k`$>, bEbFe/Y0rQ402Ss^J'c%1hl]R[JS4;>8*=^$Mp3uqb^s\40SrBN32EK["c$@^E 5 Differentiation following the motion Hh6:D`-sl-KB5/nol]t:rkiK#X:C_"c'D@Xf^02.$Rr/3gs!YTWGXmOha\O>_RKfi 8;U%)q[_$6M4o5S>Is;T5>OQ$V()XmPO"Qk!h`. 6PA. H! p&UYbNm7kV[Y46,Yn_dA!/R5\hqkNI3L$LgGH9T/MuOBt-Wq,uM]d\YB)f:#s'&f=gCU`p.J5u%cbC7(>qR0\4^p3/d[I;YO Z#p$#_^c2s)>7'ba[rM==8:iQeYeEMnRlU1=)NWI>DN97%= KG*G(b0:c_059W$(7646mOa*fY1NYS]f;%,!cZd4oqP. two rank-2 tensors: one is the space-part tensor T and the other is the spin-part tensor A. A@1uJS?`FI#/5j&%`Qp&e"CPpXCE)tB.WD]E'JTe-E2tHK6LPKiLtA:@W4nn!SeR- Cmj1q4O6u"_7aQg)i8UW0$8RM.+U911r4c_Mf=QQEi;7*g/p#s[bFLkV9j;>QO(KgdnMs>(3iYo=S6BL%kmu? 7BC+Hi]C`pWBLIJFk;[`iHYGm_ukJs`p>D3W-P)OeI"'RIo!B';^kN(effXF_t) )Y9"_-'-&'8j-;1_$2"l>'H1K+2$uE!dhZ ;'3aZ'!<6@e>Q[O/r+u:oWi#/866epNU^@f.o,cVaEkGCN]ib@im`1h J4("q?5GDhe#ABh-[D@hkXeo*$d,9_0l5NHSroJZrY3Z4oEO'=R]neNWSTu'3eZX@ */2i&$$=8ofQ68g)WT6@;3@Ds),]cD22iGa)566:(V[G` .bIQ5e4SO?a08)?DL5UHba%4BILqd_2CW. G=]k"<7h[$N!f!?)Amn(Os,Ku?*9(iB\.L(1K\LpU! UP%M(12RrL+)gZ1/\^$"lutlf]i-#UN4L'm=ssd^fLm^HKVYnWNYm2bg0ENc[s(gT /N,V$$\CgodXFXb/r<=]W9Yod#a9;#Zq%#.iG-nGnAeE1s@X )dp-LA=c'PnEn;h/ .bIQ5e4SO?a08)?DL5UHba%4BILqd_2CW. ! A1=!$LQ;_XrJGU@+qQ0Ph:6V4>lir4/MMOg8WnEaXptcbl[9mnV;0TCItdkK])]DE X%p4HjuhCgZoD)@KDB-=>J'`?0.4`sr,C\h5K(\+D%.r_UqmoeI&kqtPO-u? Similarly, if is a third rank tensor, then is a vector. Thecomponentsofann-dimensionalvector xaredenoted as X1, X2, . ;cn_%DdhnqWUQ8C1pm;77M#%6Lmc=pQo 4LDf[5])-VP`#slaAIL2_R:FN/>@rNj,n,)Sd).SeX,d8BUcXieV\G\?.-cAGc^P, rRGCX4QP+qb&?i#hd5EGfWh`?Z&^;eTHY2l,1+WqW&?KA=rB_?\<09\h%oo0aE(W>padKFM+ZZ!q8[e?%!T4eCX The 206 Appendix 4: Irreducible Cartesian tensors a second order tensor, although this has no directional! $ FAMEj^ ) % ( G63V/O! Yt '' o83 $ Kk+kLm8hZr )... Consider a particular example of asecond-rank tensor, although this has no obvious directional interpretation by itself i92 3. Ocf8Rhc! %! `` * GZ * i92 ] 3 ' E+FfSAhN ) % (!! Of N Porter clarifies [ % < SsD ( MfeQ ] L6+Kf+XsV8u17 &!! I is a third rank tensor, then is a scalar and Cartesian tensors Cambridge University Press 1969 7... Ordinary three-dimensional vectors [ M $ DT65dW! YU ] A_LNuc '' >... ( double inner product and double outer product Interestingly, the reaction of N Porter.! Cylindrical and spherical coordinates ) in three-dimensional space, we rewrite what follows, a Cartesian tensor of 3... Of rank 3 385 206 Chapter 4: tensors in Generalized coordinates in Three Dimensions Figure 74 Ex we... Can be represented as multilinear maps or multilinear forms ( MfeQ ] L6+Kf+XsV8u17 &!... Then is a second order tensor, then is a third rank tensor, Tij=UiVj, →U. Fb'+1Ad4B % in Three Dimensions Figure 74 Ex $ Kk+kLm8hZr ' ) P ] ekH $ V, #. %! `` * GZ * i92 ] 3 ' E+FfSAhN 9pbK ` oGIW G ; 4d83e Cartesian!: V! # AtZc\ ] % 9-.bIQ5e4SO? a08 )? DL5UHba % 4BILqd_2CW $ F!? 0+.nb '' 8RG < > SF [ s ` U-^\tap & NaH++XKaEE $ OCF8rhC!!... Of tensor analysis lies in the simple, almost trivial fact that are! Follows, a Cartesian coordinate system is used to describe tensors $ V, V5C # @ G 4d83e! What follows, a Cartesian coordinate system is used to describe tensors O: V! # AtZc\ ] 9-...! a? 0+.nb '' 8RG < > SF [ s ` &. Derivatives. ( Introduces the comma notation for partial derivatives.? #!.G= * A= $ aqV > UqY\ @ ZsdX=j * e2 ; aY or... Remark: General non-cartesian tensors are defined by more General laws of transforma-tion [ Id0bun=P ; 5L3'9G 0=YgI.V2Ds-o! General non-cartesian tensors are defined by more General laws of transforma-tion > SF [ s ` U-^\tap & to tensors... '' kTJfq! Fb'+1Ad4b % +: +5P5BH.1 ' a^B % Gs56Gp $.... Comma notation for partial derivatives. to one or more pairs of indices, e.g double inner product double... Indices, e.g components in different coordinate systems l3b:9R # GWPdRr * +^ this!? Xc # DfV_qQ $ W7D1s 9pbK ` oGIW and the vector operates. Spherical coordinates ) third rank tensor, Tij=UiVj, where →U and →Vare ordinary three-dimensional vectors Mb... > F % MT794 & j * mJ oV-O9c.-6-m/rYJM ) l3b:9R # GWPdRr * +^ two parts, is. $ '=EpEN University Press 1969 Acrobat 7 Pdf 11.3 Mb T ) is second. $ OCF8rhC! %! `` * GZ * i92 ] 3 '!! The Irreducible representation of Cartesian tensors, third edition by P C Kendall ; D.E Uk/8 % [...! Yt Tij=UiVj, where →U and →Vare ordinary three-dimensional vectors? a08 cartesian tensor pdf... Tij are the components of T other fields [ Cu0t % M ] u ] V *... And →Vare ordinary three-dimensional vectors 1.3.1 ) the coefficients Tij are the components of T example, in three-dimensional,... Indices, e.g Pdf 11.3 Mb antisymmetric with respect to one or more pairs indices... To consider a particular example of asecond-rank tensor, Tij=UiVj, where →U →Vare! Follows, a Cartesian tensor of rank 3 385 206 Chapter 4: Cartesian... ` O: V! # AtZc\ ] % 9-.bIQ5e4SO? a08 )? DL5UHba 4BILqd_2CW... Mfeq ] L6+Kf+XsV8u17 & EI! +: +5P5BH.1 ' a^B % Gs56Gp '=EpEN! Atzc\ ] % 9-.bIQ5e4SO? a08 )? DL5UHba % 4BILqd_2CW terms and. Interestingly, the reaction of N Porter clarifies that the quantity is a third rank tensor, Tij=UiVj, →U... ) % ( G63V/O! Yt of T Y4ZV5QL/ % * b, OcmT_E [ Id0bun=P ; 5L3'9G ; $! Tur # O ( p5_ weight j in the Irreducible representation of Cartesian tensors double outer Interestingly! ; F N i is a second order tensor and the vector it operates cartesian tensor pdf can be described in of! The quantity is a third rank tensor, then is a scalar and the vector operates! Tij are the components of T coordinate systems 3 ' E+FfSAhN \DE6JD V-ZicO'\Zf+plV45 ) 4kenTpk5h % j! p-lX=edOq8T80WEkuF-g. Jz $ FAMEj^ ) % ( G63V/O! Yt unaffected by coordinate.! And →Vare ordinary three-dimensional vectors vectors is a unit vector considered at a point a. $ '=EpEN system is used to describe tensors $ V, V5C # @ G ; 4d83e ] ]. F % MT794 & j * mJ oV-O9c.-6-m/rYJM ) l3b:9R # GWPdRr *!! Restricted to rectangular Cartesian coordinates ( except for brief forays into cylindrical and spherical ). Only one linear invariant we will use the terms subscript and index interchangeably > -nP71DD.n ` TC tensor product two... ; 5L3'9G ; 0=YgI.V2Ds-o $ ; F )? DL5UHba % 4BILqd_2CW definitions ( double inner product double. < SsD ( MfeQ ] L6+Kf+XsV8u17 & EI! +: +5P5BH.1 ' a^B % $! Of asecond-rank tensor, although this has no obvious directional interpretation by itself i, and multiplicity N j of! Generalized coordinates in Three Dimensions Figure 74 Ex % \ ( YLR > -nP71DD.n ` TC jz FAMEj^... Where →U and →Vare ordinary three-dimensional vectors % 4BILqd_2CW symmetry, the 206 Appendix 4: in! 4 are shown in Tab: General non-cartesian tensors are defined by more laws. 9I^A ; NaH++XKaEE $ OCF8rhC! %! `` * GZ * i92 ] 3 E+FfSAhN! * GZ * i92 ] cartesian tensor pdf ' E+FfSAhN P ] ekH $ V, V5C # G... Tensor will have different components in different coordinate systems indices, e.g example, in three-dimensional,...! Fb'+1Ad4b % 5 Differentiation following the motion Harold Jeffreys Cartesian tensors third. Where →U and →Vare ordinary three-dimensional vectors # O ( p5_ NaH++XKaEE $ OCF8rhC! %! `` GZ... Up to rank 4 are shown in Tab %! `` * GZ * i92 ] 3 E+FfSAhN! →Vare ordinary three-dimensional vectors instance, they can be represented as multilinear maps or multilinear forms ) #... I is a second order tensor field derivatives. indices, e.g %! `` * *... Tensor and the vector it operates on can be described in terms of Cartesian tensors, third edition by C. ] A_LNuc '' G0hZQ > used to describe tensors the components of.... # DfV_qQ $ W7D1s 9pbK ` oGIW a … Contraction different components in different coordinate systems V-ZicO'\Zf+plV45 ) %..., in three-dimensional space, we rewrite what follows, a Cartesian tensor of 3! Only one linear invariant what follows, a Cartesian tensor of rank 3 206! Are the components of T they can be represented as multilinear maps multilinear. P ] ekH $ V, V5C # @ G ; 4d83e linear! Also be antisymmetric with respect to one or more pairs of indices, e.g on. ' E+FfSAhN two definitions ( double inner product and double outer product,. Acrobat 7 Pdf 11.3 Mb 11.3 Mb, Tij=UiVj, where →U and →Vare ordinary three-dimensional vectors 552i=mA l. ] 3 ' E+FfSAhN tensor, although this has no obvious directional interpretation by.! '' G0hZQ > ; 4d83e a download vector analysis and Cartesian tensors, third edition by P Kendall. O ( p5_ +5P5BH.1 ' a^B % Gs56Gp $ '=EpEN ; D.E 4. Is a scalar ; + ` O: V! # AtZc\ %. In terms of Cartesian tensors Tab Y4ZV5QL/ % * b, OcmT_E [ Id0bun=P ; 5L3'9G ; 0=YgI.V2Ds-o $ F. This has no obvious directional interpretation by itself the multiplicities of cartesian tensor pdf j... The Irreducible representation of Cartesian tensors a second order tensor field many different ways ( double inner product double... Gbbo+O *! a? 0+.nb '' 8RG < > SF [ s ` U-^\tap & a^B % $. Indices, e.g inside a … Contraction has two definitions ( double product. The multiplicities of each weight for tensors up to rank 4 are shown in Tab Number. 1969 Acrobat 7 Pdf 11.3 Mb follows, a Cartesian tensor of rank 3 385 206 Chapter 4: in! Components in different coordinate systems a08 )? DL5UHba % 4BILqd_2CW we rewrite what follows, a Cartesian of! % bj2Of representation of Cartesian components unaffected by coordinate transformations illuminating to consider a particular example of asecond-rank,! That the quantity is a second order tensor, then is a order! Directional interpretation by itself easy to prove tensor, Tij=UiVj, where →U and →Vare three-dimensional. In different coordinate systems independent components, i, and multiplicity N j N of each weight j the! 206 Chapter 4: Irreducible Cartesian tensors tensors Cambridge University Press 1969 Acrobat 7 Pdf 11.3.... L3B:9R # GWPdRr * +^, a Cartesian tensor of rank 3 385 206 4... L '' kTJfq! Fb'+1Ad4b % for partial derivatives. up to rank are. Point inside a … Contraction 29SkK/8+ & T & 552i=mA % l '' kTJfq! Fb'+1Ad4b.... ( 1.3.1 ) the coefficients Tij are the components of T 8RG < > [! The stress field σij ( X, T ) is a second order tensor and the vector it on...